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Spectrum shape functions in first-forbidden beta transitions  
 

I.S. Towner 
 

The beta-decay differential decay rate is written in Behrens and Bühring [1] (called BB) as  
 

        𝑑!Γ =    !!

!! ! 𝐹!𝐿! 𝑊! −𝑊 !𝑝𝑊𝑑𝑊𝑑Ω!𝑑Ω! 𝐶 𝑊 + 𝐷 𝑊 !
!
p ⋅ k +⋯         (1) 

 
where p and k are unit vectors in the directions of the electron and neutrino respectively.  Here W0 is the 
maximum value of the electron total energy W, p is the electron momentum, p2 = W2 − 1 in electron rest-
mass units, and F0L0 is the Fermi function as defined by BB. The spectrum shape functions of interest 
here are denoted C(W) and D(W) and their ratio defines the beta-neutrino angular-correlation coefficient 
 

                                   𝑎!" 𝑊 = ! !
! !

.                                                                       (2) 

 
Starting from the BB formalism and invoking the impulse approximation, we have derived simple 

expressions for the spectrum shape functions in terms of six nuclear matrix elements  characterizing the  
parity-changing nature  of first-forbidden beta decay. To display these expressions, we define 
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Where K is the multipolarity of the beta transition, which for first-forbidden decays has the value K = 0 
and 1 for non-unique transitions and K = 2 for unique transitions.  Expressions for the coefficients k(K) , 
k(K ) A(K ) , k(K ) B(K ) and k(K) C(K ) are given in Table I. They depend on the six nuclear matrix elements, on 
W0 the maximum electron energy, and on ξ = αZ/2R, where R is the radius of a uniformly charged sphere 
approximating the nuclear charge density distribution.  The six nuclear matrix elements are defined 
schematically by 
 

𝑥 =   −𝑔!   𝑖𝑟𝐶!                                                                                                                                                                   (4) 
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𝜉!𝜐 =   −
𝑔!
𝑀

3 p×𝜎 !                                                                                                                                 (6) 

 

𝜉!𝑦 =   −
𝑔!
𝑀
〈p〉                                                                                                                                                (7) 

 

Here  the  spherical  harmonic of rank L  is  written  CL(𝐫)  = (4π/(2L + 1))1/2 YL (𝐫). Further, p is 
the momentum operator, which in coordinate space is taken as a symmetrized derivative operator 

−𝑖 !
!
∇ + ∇ .  Lastly, 𝑔! and 𝑔! are the vector and axial-vector coupling constants of the weak 

interaction, and M is the nucleon mass in electron rest-mass units.  We have also introduced ζ0 and ζ1 as 
specific combinations of nuclear matrix elements: 

 

𝜁! =    𝜉′! +   𝜉𝜔! +
1
3
𝜔𝑊! 

𝜁! =    𝜉!𝑦 −   𝜉 𝑢! + 𝑥! +   
1
3
𝑢 − 𝑥 𝑊!                                                                                  (8) 

 
Most first-forbidden non-unique decays studied  have been low-energy  transitions  in heavy 

nuclei  for which the inequality ξ ≫  W0 holds.  In this limit the coefficient k(K) is of order ξ2, coefficients 
k(K ) A(K ) and k(K) B(K) are of order ξ and coefficient k(K) C(K) is of order one. Thus in the ξ-approximation 
(in which only terms in the leading power of ξ are  retained),  the  spectral  functions C (W) and D(W) 
both  become energy  independent,  and the beta spectrum  has the  allowed shape. The effect is 
independent  of the nuclear matrix elements  and thus little nuclear-structure information may be 

Table I. Expressions for the parameters introduced in the spectral function, Eq. (3), in terms of the nuclear matrix elements. 
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determined from shape measurements alone.  The beta-neutrino correlation coefficient in the ξ-
approximation becomes energy independent and takes a simple form 

 

𝑎!" =
𝜁!! −   

1
3 𝜁!

!

𝜁!! + 𝜁!!
                                                                                                                                                              (9) 

 
 
Thus in a 0+  → 0−  transition in which only the rank-0 multipole enters, aeν = +1, while in a 0+  → 

1−  transition in which only rank-1 multipole enters, aeν  = − 1 .  This is exactly the same situation that 
exists in allowed decays: aeν = +1 for pure Fermi transitions and aeν = − 1   for pure Gamow-Teller 
transitions.  Only for transitions for which both multipolarity 0 and 1 contribute is there any likelihood 
there will be any significant dependence on the details of nuclear matrix elements. 

To test our coding, we have recomputed shell-model estimates of first-forbidden β-decay matrix 
elements for a few cases in light nuclei that are available in the literature.  We start with a 1972 

calculation of Towner and Hardy [2] for the !
!

!
⇆ !

!

!
 transitions in 15C, 17N and 17Ne.  We compute the 

integrated spectrum shape function, f, defined as  
 

𝑓 =    𝑊𝑝 𝑊! −𝑊 !
!!

!
𝐹!𝐿!𝐶 𝑊 𝑑𝑊.                                                                                                                        (10) 

 
 
Since this latter quantity includes all the matrix-element information, first forbidden f t values (up 

to radiative and isospin-symmetry-breaking corrections) are all equal to a universal constant established 
from the average corrected Ft value from superallowed beta decay: i.e. 

 
       ft  = 2Ft = 6145 s.                                                       (11) 
 
Thus an experimental value for f can be deduced from the measured partial half-life via Eq.  (11). 

The results are listed in Table II.  Our calculated matrix elements and the integrated  spectrum  shape 
function  are  in very  good agreement with the published values.  The experimental values for f obtained 
from the ENSDF [3] listings of partial half-lives are in excellent agreement with the shell-model results. 

The other literature values we compare with are those of Millener et al. [4] for the β decay of 11Be 

( !  
!

!
) to the ground state ( !

!

!
)and first  excited  state  (!  

!

!
) in 11B. Millener’s shell-model calculation is  

based on six  valence  orbitals:1s1/2,  p3/2, p1/2, d5/2, 2s1/2,  and d3/2  using the Cohen-Kurath [5] effective 
interaction for p-shell interactions, and the Millener-Kurath [6] effective interaction for the cross-shell 
interactions.  No more than one nucleon occupies the sd-shell orbitals in the 1 → 0ħω calculation, and no 
more than two in the 1 → (0 + 2)ħω calculation.  The inclusion of the lowest 1s1/2 orbital is essential for 
the 2 ħω calculation, in order that the spurious centre-of-mass motion could be correctly removed. In our 
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work, we only use five orbitals, p3/2 , p1/2, d5/2, 2s1/2  and d3/2, and do not remove the spurious centre-of-
mass component. 

Our results are shown in Table III.  For the small space 1 → 0 ħω calculation, our values of the 
coordinate matrix elements, w, x, u, z, agree quite well with Millener’s values, but we are less successful 
in the 1 → (0 + 2) ħω calculation. This is probably due to our failure to remove the spurious centre-of-
mass component from the 2ħω wave functions. For the relativistic matrix elements, we have used 
Siegert’s theorem for both ξ υ and ξ y. Millener uses a similar but not identical CVC relation for ξ y and 
derivatives of oscillator functions for ξυ. So our results differ from Millener’s on the value of the 

Table II. Nuclear matrix elements (in fm units) for !
!

!
⇆    !

!

!
transitions in the β decay of 15C, 17N and 17Ne from the 

published values of Towner and Hardy [2] and the present work.  Also given is the integrated spectrum shape function 
f and its current experimental value. 

 

Table III. Nuclear matrix elements (in fm units) for the β decay of 11Be (!
!

!
) to the ground state (!

!

!
) and first excited 

state ( !
!

!
)  in 11B from the published values of Millener et al.[4] and the present work in a small shell-model space,  

1→ 0 ħω and a large space 1 → (0+2) ħω. Also given is the integrated spectrum shape function for each multipole, 
f(K), and their sum: 𝑓 = ∑ 𝑓(!).!  
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relativistic matrix elements and hence on the integrated spectrum shape, f.   Both calculations in the small 
space, 1→0 ħω, find f values much larger than the experimental value.  In the larger space, 1→(0 + 2) ħω, 
our results are closer to experiment than Millener’s because our relativistic matrix elements are smaller.  
This result gives some support for the use of Siegert’s theorem in the evaluation of relativistic matrix 
elements. 
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